
Issue Custom Fields Parent/Child:

I am a newbie trying to do this requirement. I could not make it work by just using the plug-in. It seems

like many of details solution is within the Redmine core. HELP!

Our project requires the use of Issue Custom Fields model a parent/child type relationship. Currently,

there is no facility to define both Parent and Child as entity classes with a < bidirectional one-to-

many> or mostly < bidirectional one-to-one> association with cascades to model a parent/child

relationship. A very simple example is;

Building [Main, Engineering, Production, …]

Has Floor [1, 2, 3, 4, 5, 6, …]

Has unit [1, 2, 3, 4, 5, …]

 Has room [bedroom, washroom, dining, …]

 Has flooring [hardwood, carpet, cement, …]

The chain of parent-child will look like this:

Building (Main)  Floor (1)  Unit (101)  Room (living room) Flooring (hardwood)

Here is the list of my pain points:

1. Behavior of the field list collections

List collections are considered to be a logical part of their owning entity and not of the contained entities.

Be aware that this is a critical distinction that has the following consequences:

 When you remove/add an object from/to a list collection, the version number of the collection

owner is incremented.

 If an object that was removed from a list collection is an instance of a value type (e.g. a

composite element), that object will cease to be persistent and its state will be completely

removed from the database. Likewise, adding a value type instance to the list collection will

cause its state to be immediately persistent.

 Conversely, if an entity is removed from a list collection (a one-to-many or many-to-many

association), it will not be deleted by default. This behavior is completely consistent; a change to

the internal state of another entity should not cause the associated entity to vanish. Likewise,

adding an entity to a list collection does not cause that entity to become persistent, by default.

Adding an entity to a list collection, by default, merely creates a link between the two entities. Removing

the entity will remove the link. This is appropriate for all sorts of cases. However, it is not appropriate in

the case of a parent/child relationship. In this case, the life of the child is bound to the life cycle of the

parent.

For example, <one-to-many> or <one-to-one> can be done by doing an INSERT to create the

record for c and an UPDATE to create the link from p to c and on the parent_id column, specify

not-null="true" in the collection mapping. And also add the parent property to the Child

class. Now that the Child entity is managing the state of the link, we tell the collection not to update the

link.

2. Cascading life cycle

Similarly, we do not need to iterate over the children when saving or deleting a Parent. The following

removes p and all its children from the database.

However, deleting c will not remove c from the database. In this case, it will only remove the link to p

and cause a NOT NULL constraint violation. You need to explicitly delete() the Child.

The right way, a Child cannot exist without its parent. So if we remove a Child from the collection,

we do want it to be deleted.

Even though the collection mapping specifies inverse="true", cascades are still processed by

iterating the collection elements. If you need an object be saved, deleted or updated by cascade, you must

add it to the collection.

3. Cascades and unsaved-value

Suppose we added up a Parent in one Session, made some changes in a UI action and wanted to

persist these changes. The Parent will contain a collection of children and, since the cascading update is

enabled, it is necessary to know which children are newly instantiated and which represent existing rows

in the database. We will also assume that both Parent and Child have generated identifier properties

of type LIST.

This may be suitable for the case of a generated identifier, but what about assigned identifiers and

composite identifiers? This is more difficult, since Redmine cannot use the identifier property to

distinguish between a newly instantiated object, with an identifier assigned by the user, and an object

loaded in a previous session. In this case, Redmine will either use the timestamp or version property, or

will actually query the second-level cache or, worst case, the database, to see if the row exists.

4. Conclusion

None of the above issues exist in the case of <composite-element> mappings, which have exactly

the semantics of a parent/child relationship. Unfortunately, there are two big limitations with composite

element classes: composite elements cannot own collections and they should not be the child of any entity

other than the unique parent.

Just like all issue custom fields, they can be tracked, required, used for filter, and searchable.

