Redmine - Defect #19577

Open redirect vulnerability with back_url param
2015-04-09 12:50 - Jan from Planio www.plan.io

Status: Closed Start date:

Priority: Normal Due date:

Assignee: Jean-Philippe Lang % Done: 0%
Category: Security Estimated time: 0.00 hour
Target version: 2.6.7

Resolution: Fixed Affected version:

Description

Summary

The valid_back_url? method used e.g. after a login to redirect the user
back to where they came from doesn't properly validate passed URLs
resulting in an open redirect vulnerability which can be used for
phishing and other attacks.

After the redirect to the untrusted site, phishers may then steal the
user’s credentials and then use these credentials to access the
legitimate web site. Because the server name in the modified link is

identical to the original site, phishing attempts have a more
trustworthy appearance.

Description

When redirecting the user back after a successful login,
redirect_back_or_default is trying to validate the passed URL to ensure

that the target of the HTTP 302 redirect is valid.

However, the valid_back_url? method used to validate the URL doesn't

take some cases into account which can result in a redirect to an

arbitrarily chosen host.

Example exploit:

http : // redmine. example. com/login? back_url=Qattacker.
This URL results in a redirect to

http : // redmine. example. com Qattacker. com

which results in a request to http : // attacker. com with
redmine. example. com passed as a basic auth user.

Credits

This issue was discovered by Yassine ABOUKIR of
http://yassineaboukir.com/. The patch was developed by Holger Just of
Planio.

Solution

The attached patch fixes this vulnerability. It adapts the
valid_back_url? method to a method called validate_back_url which
returns the validated and cleaned up URL which can be used by the
redirect method.

The patch cleanly applies against the current trunk as well as previous
Redmine versions (including 2.5, 2.6, and 3.0)

com

2025-05-09

1/5



http://yassineaboukir.com/

Associated revisions

Revision 14560 - 2015-09-13 16:35 - Jean-Philippe Lang
Open redirect vulnerability (#19577).

Patch by Holger Just.

Revision 14562 - 2015-09-13 16:43 - Jean-Philippe Lang
Merged r14560 and r14561 (#19577).

Revision 14563 - 2015-09-13 16:44 - Jean-Philippe Lang
Merged r14560 and r14561 (#19577).

Revision 14564 - 2015-09-13 16:45 - Jean-Philippe Lang
Merged r14560 and r14561 (#19577).

History

#1 - 2015-04-09 12:52 - Jan from Planio www.plan.io

- Description updated

(I am submitting this in separate steps changing the description since my first attempts were blocked by redmine.org's spam filter?!)

#2 - 2015-04-09 12:52 - Jan from Planio www.plan.io

- Description updated

#3 - 2015-04-09 12:53 - Jan from Planio www.plan.io
- File 0001-Prevent-open-redirect-to-arbitrary-hosts.patch added

#4 - 2015-04-09 12:53 - Jan from Planio www.plan.io

- Description updated

#5 - 2015-04-12 23:38 - Jan from Planio www.plan.io
- File 0001-Prevent-open-redirect-to-arbitrary-hosts.patch added

Here's an updated version that also prevents something like ?back_url=/attacker.com

#6 - 2015-04-12 23:38 - Jan from Planio www.plan.io
- File deleted (0001-Prevent-open-redirect-to-arbitrary-hosts.patch)

#8 - 2015-09-13 16:39 - Jean-Philippe Lang

- Project changed from 2 to Redmine

- Subject changed from Open redirect vulnerability to Open redirect vulnerability with back_url param
- Category set to Security

- Status changed from New to Resolved

- Assignee set to Jean-Philippe Lang

- Target version set to 2.6.7

- Private changed from No to Yes

- Resolution set to Fixed

#9 - 2015-09-13 16:45 - Jean-Philippe Lang

- Status changed from Resolved to Closed

Fix committed in 3.1, 3.0 and 2.6 branches. Thanks.

#11 - 2015-09-16 19:22 - Jean-Philippe Lang

FTR, this vulnerability was introduced in r13213, which was supposed to fix another issue. This is not good :(

2025-05-09 2/5


https://www.redmine.org/projects/redmine/repository/svn/revisions/13213

Rather than trying to parse the back_url and check if it's OK, another option would be (in addition or even instead of the current check) to sign the
back_url param with a secret using ActiveSupport::MessageVerifier.
What do you think?

#12 - 2015-09-16 19:43 - Jan from Planio www.plan.io

Jean-Philippe Lang wrote:

What do you think?

Hmm, interesting thought. Similar to how OpenlD/OAuth are making sure that back_urls are valid. It would certainly make sure the URLs are all
coming from "within" Redmine. | am pretty sure that Holger would have an opinion on this, but he's currently on holidays :) I'll ask him next week and
post any feedback if you'd like one more opinion.

#13 - 2015-09-16 20:45 - Jean-Philippe Lang

Redmine may also redirect to the referer:

® no check is done in the current implementation (might be exploited)
¢ redirect to the referer would not be supported with the solution proposed in #19577-11

#14 - 2015-09-22 16:21 - Jan from Planio www.plan.io
Jan from Planio www.plan.io wrote:

I'll ask Holger next week and post any feedback if you'd like one more opinion.

As promised, here's Holger's opinion on this for your consideration:

While it is certainly possible to sign the URL using ActiveSupport's
MessageVerifier class, doing so would significantly complicate matters

for external users of the interface (e.g. external services integrating

into Redmine who want to force a login, OAuth or single sign-on login
provider, ...). Also, it would hide the URL verification behind an

opaque layer of cryptographic "magic" which isn't guaranteed to solve

the issue but makes verification much harder, for devs as well as end users.

Instead, in order to provide an easier verification solution, I'd
propose to define the protocol for these URLs more strictly which would
make verification easier for us.

One way for this is to only allow full URLs with the correct protocol
and hostname as configured in the setting which could then easily be
verified using this Regex (with proper escaping added):

\A#{Setting.protocol}://#{Setting.host_name} (/|\z)

Such a full URL will be passed through all Rails layers unchanged on
redirects. Then, you just need to adapt all places where the back URL is
generated to generate a full URL instead, but this needs roughly the
same effort as when using signed URLs.

#15 - 2015-09-23 21:13 - Jean-Philippe Lang
Thanks for sharing your thoughts.
While it is certainly possible to sign the URL using ActiveSupport's
MessageVerifier class, doing so would significantly complicate matters
for external users of the interface (e.g. external services integrating
into Redmine who want to force a login, OAuth or single sign-on login
provider, ...).
I'm not sure to get your point. Do you have a specific use case where this would be problematic while the current implementation is not?
Also, it would hide the URL verification behind an

opaque layer of cryptographic "magic" which isn't guaranteed to solve the issue

If we sign URLs generated by Redmine only, how could it not solve the issue? Do you have a particular example in mind?

2025-05-09 3/5


https://www.redmine.org/issues/19577#note-11
http://www.plan.io

but makes verification much harder, for devs as well as end users.

That's a concern, but we can leave the back_url param as is (clear text) and add a back_url_token param that would hold the HMAC for verification.

Instead, in order to provide an easier verification solution, I'd
propose to define the protocol for these URLs more strictly which would
make verification easier for us.

One way for this is to only allow full URLs with the correct protocol
and hostname as configured in the setting which could then easily be
verified using this Regex (with proper escaping added):

\A#{Setting.protocol}://#{Setting.host_name} (/|\z)

Such a full URL will be passed through all Rails layers unchanged on
redirects. Then, you just need to adapt all places where the back URL is
generated to generate a full URL instead, but this needs roughly the
same effort as when using signed URLs.

| see a few problems with this solution:

e Generating full URLs with protocol is a hassle, we've got a few tickets about the generated links in email notifications especially from people who
run Redmine in a sub-uri

e Redirects to back urls would not work until an admin properly sets the protocol and host name

¢ This would not work when accessing a Redmine instance with different (eg. internal/external) host names, or different protocols.

And checking a param against a regexp is IMHO much open for attacks than signing generated values. This old Firefox vulnerability is a good
example. CRLF injection in a back url param would not work in Redmine but still, see how the malicious URL would perfectly match the regexp above:
https://bugzilla.mozilla.org/show_bug.cgi?id=655389

#16 - 2015-09-25 19:34 - Jan from Planio www.plan.io
Jean-Philippe Lang wrote:
Thanks for sharing your thoughts.
While it is certainly possible to sign the URL using ActiveSupport's
MessageVerifier class, doing so would significantly complicate matters
for external users of the interface (e.g. external services integrating

into Redmine who want to force a login, OAuth or single sign-on login
provider, ...).

I'm not sure to get your point. Do you have a specific use case where this would be problematic while the current implementation is not?

| guess it would be for cases where external software needs to redirect to content in Redmine but explicitly wants the user to sign in for it. Currently,
this is possible by just composing the URL "from the outside". | agree though, that this case is rather exotic and probably not something that Redmine
should worry too much about. If external apps need this, there will certainly also be a way to achieve it with a signed back_url param. It could also be
solved by having a config param in configuration.yml that would disable this feature.

Also, it would hide the URL verification behind an

opaque layer of cryptographic "magic" which isn't guaranteed to solve the issue

If we sign URLs generated by Redmine only, how could it not solve the issue? Do you have a particular example in mind?

| guess that Holger's argument was that if someone somehow manages to get a malicious URL into Redmine to get it signed and then redirecred, and
we would rely on signed back_url s only for verification, we might still be vulnerable to malicious redirects if there's no additional validity check based
on regex for example. | agree that this risk is somehow theoretical, though.
but makes verification much harder, for devs as well as end users.
That's a concern, but we can leave the back_url param as is (clear text) and add a back_url_token param that would hold the HMAC for
verification.
Yes, | think it would be great if the back_url would remain "visible" for end users.

Instead, in order to provide an easier verification solution, I'd
propose to define the protocol for these URLs more strictly which would

2025-05-09 4/5


https://bugzilla.mozilla.org/show_bug.cgi?id=655389

make verification easier for us.

One way for this is to only allow full URLs with the correct protocol
and hostname as configured in the setting which could then easily be
verified using this Regex (with proper escaping added):

(]

Such a full URL will be passed through all Rails layers unchanged on
redirects. Then, you just need to adapt all places where the back URL is
generated to generate a full URL instead, but this needs roughly the
same effort as when using signed URLs.

| see a few problems with this solution:

e Generating full URLs with protocol is a hassle, we've got a few tickets about the generated links in email notifications especially from people
who run Redmine in a sub-uri

¢ Redirects to back urls would not work until an admin properly sets the protocol and host name

e This would not work when accessing a Redmine instance with different (eg. internal/external) host names, or different protocols.

And checking a param against a regexp is IMHO much open for attacks than signing generated values. This old Firefox vulnerability is a good
example. CRLF injection in a back url param would not work in Redmine but still, see how the malicious URL would perfectly match the regexp
above:

https://bugzilla.mozilla.org/show_bug.cqi?id=655389

All valid points, | agree.

Jean-Philippe, do you know any other open source projects or sites, solving this issue using signed params? To be honest, | have never seen it "in
the wild" which might also be the reason I'm still on the fence regarding this.

#17 - 2015-09-25 21:52 - Jean-Philippe Lang

Jan from Planio www.plan.io wrote:
Jean-Philippe, do you know any other open source projects or sites, solving this issue using signed params? To be honest, | have never seen it
"in the wild" which might also be the reason I'm still on the fence regarding this.

No. After a quick search, | found this guy from Google that suggests this solution:
Consider signing your redirects. If your website does have a genuine need to provide URL redirects, you can properly hash the destination URL

and then include that cryptographic signature as another parameter when doing the redirect. That allows your own site to do URL redirection
without opening your URL redirector to the general public.

http://googlewebmastercentral.blogspot.fr/2009/01/open-redirect-urls-is-your-site-being.html

Another option would be to use full URLs in all back_url params as proposed by Holger but use a simpler approach for verification, without using
protocol and hostname settings, but #root_url instead. Rails generates the root url for us based on the current request:

back_url.starts_with? (root_url)

#20 - 2015-12-08 06:39 - Jan from Planio www.plan.io

- Private changed from Yes to No

#21 - 2015-12-08 06:39 - Jan from Planio www.plan.io

This has been fixed and released, therefore I'm opening up this issue.

Files

0001-Prevent-open-redirect-to-arbitrary-hosts.patch 3.69 KB 2015-04-12 Jan from Planio www.plan.io

2025-05-09 5/5


https://bugzilla.mozilla.org/show_bug.cgi?id=655389
http://www.plan.io
http://googlewebmastercentral.blogspot.fr/2009/01/open-redirect-urls-is-your-site-being.html
http://www.tcpdf.org

