
Redmine - Patch #29171

Add an index to improve the performance of issue queries involving custom fields

2018-07-02 19:39 - Stephane Evr

Status: Closed Start date:

Priority: Normal Due date:

Assignee: Go MAEDA % Done: 0%

Category: Performance Estimated time: 0.00 hour

Target version: 5.1.0

Description

On our Redmine installation, we have around 100000+ issues with lots of custom fields.

I ran into a bottleneck were some Issue Queries where very very slow when requesting criteria on multiple custom fields and

grouping.

In the custom_values table, I noticed that there was no index for [customized_type, customized_id, custom_field_id]. Adding such

index resulted in loading times much faster for those complex issue queries (From 60+ seconds down to 5 seconds, with DB caching

disabled).

Here is the index I added:

class AddMissingIndexCustomValues < ActiveRecord::Migration

 def change

 add_index :custom_values, [:customized_type, :customized_id, :custom_field_id], name:

"custom_values_customized_custom_field"

 end

end

Associated revisions

Revision 21955 - 2022-11-11 00:49 - Go MAEDA

Add an index to improve the performance of issue queries involving custom fields (#29171).

Contributed by Stephane Evr.

History

#1 - 2018-07-02 21:46 - Pavel Rosický

there're already two indexes

custom_values_customized [customized_type, customized_id]

index_custom_values_on_custom_field_id [custom_field_id]

 it would be better to replace custom_values_customized with [customized_type, customized_id, custom_field_id]. We don't need an extra index and

I'll still be effective.

60s to 5s seems to be a lot. My db has 140000 issues and 10000000 custom values (mysql 5.7) and I can confirm grouping queries with custom fields

are about 50% faster (without db caching). It's an improvement.

What is your db backend? Could you share query plans (explain) of the problematic query (with and without the index)?

https://dev.mysql.com/doc/refman/8.0/en/explain-extended.html

#2 - 2018-07-03 16:16 - Stephane Evr

Here is my DB Version: mysql Ver 15.1 Distrib 10.0.34-MariaDB, for debian-linux-gnu (x86_64) using readline 5.2

Please find below an example of long SQL Query. The original query was much much bigger, but I have isolated a part which was taking a lot of time.

For instance, sort the list of issues by a Custom Field:

SELECT issues.* FROM issues

LEFT OUTER JOIN custom_values cf_34

 ON cf_34.customized_type = 'Issue'

 AND cf_34.customized_id = issues.id

 AND cf_34.custom_field_id = 34

 AND cf_34.value <> ''

ORDER BY Coalesce(cf_34.value, '') DESC

2025-05-02 1/5

https://dev.mysql.com/doc/refman/8.0/en/explain-extended.html

LIMIT 25;

 Here Custom Field id is 34, it is of type list in Redmine and its possible values are ['OK', 'KO', '']

The DB contains:

- 147262 Issues

- 3318197 Custom Values

- 51211 Custom Values associated with Custom Field 34

Running the query without the added index Takes 13 seconds:

...

25 rows in set (13.64 sec)

 And the EXPLAIN:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: issues

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 147262

 Extra: Using temporary; Using filesort

*************************** 2. row ***************************

 id: 1

 select_type: SIMPLE

 table: cf_34

 type: ref

possible_keys: custom_values_customized,index_custom_values_on_custom_field_id

 key: custom_values_customized

 key_len: 96

 ref: const,redmine_development.issues.id

 rows: 14

 Extra: Using where

 Now with the added index, it takes 2 seconds:

...

25 rows in set (1.91 sec)

 And the EXPLAIN:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: issues

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 147262

 Extra: Using temporary; Using filesort

*************************** 2. row ***************************

 id: 1

 select_type: SIMPLE

 table: cf_34

 type: ref

possible_keys: custom_values_customized,index_custom_values_on_custom_field_id,custom_values_customized_custom

_field

 key: custom_values_customized_custom_field

 key_len: 100

 ref: const,redmine_development.issues.id,const

 rows: 1

 Extra: Using where

#3 - 2018-07-03 16:24 - Stephane Evr

Pavel Rosický wrote:

it would be better to replace custom_values_customized with [customized_type, customized_id, custom_field_id]. We don't need an extra index

and I'll still be effective.

2025-05-02 2/5

 I agree we could just replace the existing index with the new one, though I don't know if this may slow down things somewhere else.

#4 - 2018-07-03 17:17 - Pavel Rosický

ok, the real problem is elsewhere

SELECT issues.* FROM issues

LEFT OUTER JOIN custom_values cf_34

 ON cf_34.customized_type = 'Issue'

 AND cf_34.customized_id = issues.id

 AND cf_34.custom_field_id = 34

 AND cf_34.value <> ''

ORDER BY Coalesce(cf_34.value, '') DESC

LIMIT 25;

 id: 1

select_type: SIMPLE

table: issues

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

 rows: 147262

 Extra: Using temporary; Using filesort

it means that your db has to load 147262 issues to execute your query. The query is also ordered

ORDER BY Coalesce(cf_34.value, '') DESC

because it's ordered by a join statement it has to process

14 * 147262 rows

if you add an index the locality is better, then we have to process only

1 * 147262 rows

Maybe we can use inner join for IS/ALL filters (give it a try), but it would require major changes how redmine stores custom values right now. There

always has to be a custom value and it also won't work for NULL values. Let's discuss about it in a new ticket if you're interested.

SELECT issues.* FROM issues

INNER JOIN custom_values cf_34

 ON cf_34.customized_type = 'Issue'

 AND cf_34.customized_id = issues.id

 AND cf_34.custom_field_id = 34

 AND cf_34.value <> ''

ORDER BY Coalesce(cf_34.value, '') DESC

LIMIT 25;

 Stephane Evr wrote:

Pavel Rosický wrote:

it would be better to replace custom_values_customized with [customized_type, customized_id, custom_field_id]. We don't need an extra

index and I'll still be effective.

 I agree we could just replace the existing index with the new one, though I don't know if this may slow down things somewhere else.

 writes could be slower because [customized_type, customized_id, custom_field_id] is more complicated than [customized_type, customized_id]

it won't slowdown existing read queries because the order is the same as the previous index, for instance

SELECT custom_values WHERE customized_type = 'Issue' AND customized_id = 1 can use [customized_type, customize

d_id, custom_field_id] index

but

SELECT custom_values WHERE customized_id = 1 AND custom_field_id = 1 can't (not a real case)

2025-05-02 3/5

#5 - 2018-07-03 18:09 - Stephane Evr

Pavel Rosický wrote:

because it's ordered by a join statement it has to process

14 * 147262 rows

if you add an index the locality is better, then we have to process only

1 * 147262 rows

Maybe we can use inner join for IS/ALL filters (give it a try), but it would require major changes how redmine stores custom values right now.

There always has to be a custom value and it also won't work for NULL values. Let's discuss about it in a new ticket if you're interested.

 Okay, thanks for your comments! One thing I am missing is why 14 rows? I tried with a completely different custom field and there were 14 rows to

process as well.

Anyway I will keep this index as it has really decreased the response time of Issue#index by a lot in complex projects. For sure there is a small

overhead but only as new issues are created (existing custom values will not be reindexed when their value changes).

#6 - 2018-07-03 22:19 - Pavel Rosický

Stephane Evr wrote:

Okay, thanks for your comments! One thing I am missing is why 14 rows? I tried with a completely different custom field and there were 14 rows

to process as well.

 It is showing how many rows it ran through to get result (it's just an estimate, not an exact number). It depends on many factors, but if the number of

rows is too high the query is probably too complex or indexes are missing.

Anyway I will keep this index as it has really decreased the response time of Issue#index by a lot in complex projects. For sure there is a small

overhead but only as new issues are created (existing custom values will not be reindexed when their value changes).

 I don't see any downsides about this change, so +1

#7 - 2018-07-04 01:35 - Go MAEDA

- Category set to Performance

Stephane Evr and Pavel Rosický, thank you for the detailed investigation.

My understanding is that the conclusion is that Redmine should have an index for [:customized_type, :customized_id, :custom_field_id] instead of

[customized_type, customized_id]. Is it correct?

#8 - 2018-07-04 12:37 - Stephane Evr

Go MAEDA wrote:

Stephane Evr and Pavel Rosický, thank you for the detailed investigation.

My understanding is that the conclusion is that Redmine should have an index for [:customized_type, :customized_id, :custom_field_id] instead

of [customized_type, customized_id]. Is it correct?

 Yes

#9 - 2018-07-04 14:42 - Go MAEDA

- Target version set to Candidate for next major release

#10 - 2022-10-12 16:38 - Go MAEDA

- File 29171.patch added

- Target version changed from Candidate for next major release to 5.1.0

Setting the target version to 5.1.0.

#11 - 2022-11-11 00:51 - Go MAEDA

- Subject changed from Add missing index to custom_values to Add an index to improve the performance of issue queries involving custom fields

- Status changed from New to Closed

- Assignee set to Go MAEDA

2025-05-02 4/5

Committed the patch. Thank you.

#12 - 2023-09-13 15:40 - Han Boetes

Dear @Go MAEDA

Can this patch be added to 5.0.6, please? 5.1.0 is a long way off and this fix would be very welcome.

Thanks,

Han

#13 - 2023-09-14 09:40 - Go MAEDA

Han Boetes wrote in #note-12:

Can this patch be added to 5.0.6, please? 5.1.0 is a long way off and this fix would be very welcome.

 I don't think 5.0.6 should include this change, because minor version upgrades of Redmine customarily do not include database migrations.

#14 - 2024-09-09 16:00 - Thijs Thiessens

Hi!

Is there some way we can apply this manually?

Thanks,

Thijs

Files

29171.patch 696 Bytes 2022-10-12 Go MAEDA

Powered by TCPDF (www.tcpdf.org)

2025-05-02 5/5

http://www.tcpdf.org

