Redmine - Defect #36245

ActiveSupport::Reloader.to_prepare not working in trunk 21287
2021-11-25 09:00 - Alexander Meindl

Status: Resolved Start date:

Priority: Normal Due date:

Assignee: % Done: 0%
Category: Plugin API Estimated time: 0.00 hour
Target version:

Resolution: Affected version:

Description

With r21283 in trunk ActiveSupport::Reloader.to_prepare and Rails.configuration.to_prepare is not fired anymore.

ActiveSupport::Reloader.to_prepare is required for plugins (as an example), if some code should loaded after all plugins (other
plugins) are loaded.

Maybe there is another possibility with Rails 6 or Zeitwerk for doing this, but imho ActiveSupport::Reloader.to_prepare should work
within plugins, too. See
https://guides.rubyonrails.org/autoloading_and reloading_constants.html#autoloading-when-the-application-boots

Related issues:

Related to Redmine - Patch #34072: Hook after plugins were loaded Closed
Related to Redmine - Feature #32938: Rails 6: Zeitwerk support Closed
History

#1 - 2021-11-25 09:20 - Alexander Meindl

The defect is for the usage of ActiveSupport::Reloader.to_prepare in a plugin - not in Redmine itself (just to make it clear).
I did not find a solution to fix this behavior until now.
Here is an example for a plugin init.rb:

Redmine: :Plugin.register :my_plugin do
name 'My plugin'
version '0.01"'

end

ActiveSupport: :Reloader.to_prepare do
raise 'this is never called'
end

Rails.configuration.to_prepare do
raise 'this is never called, too'
end

#2 - 2021-12-01 13:53 - Takashi Kato
| apologize for the delay in responding.
Before the introduction of zeitwerk, the autoloader loads Redmine plugins on initializing.

After the introduction of zeitwerk, to make the Redmine::Plugin class manageable for zeitwerk, Redmine::PluginLoader runs the "init.rb" for all plugins
inside the "Rails.configuration.to_prepare" block (and run on every reload).

https://www.redmine.org/projects/redmine/repository/entry/trunk/lib/redmine/plugin_loader.rb#L.108

Now processing written inside the "Rails.configuration.to_prepare" block in "init.rb" can be written directly in "init.rb".
Let me know if there are any problems in creating plugins.

#3 - 2021-12-01 14:52 - Takashi Kato

Alexander
It may not be a plugin you want to fix, but | found your plugin on GitHub and made it compatible with zeitwerk.

https://github.com/tohosaku/redmine_emojibutton/commits/zeitwerk

2025-05-02 1/8

https://www.redmine.org/projects/redmine/repository/svn/revisions/21283
https://guides.rubyonrails.org/autoloading_and_reloading_constants.html#autoloading-when-the-application-boots
https://www.redmine.org/projects/redmine/repository/entry/trunk/lib/redmine/plugin_loader.rb#L108
https://github.com/tohosaku/redmine_emojibutton/commits/zeitwerk

#4 - 2021-12-01 16:49 - Alexander Meindl
Hi Takashi,

thanks for your answer. The problem is, you cannot use Classes from Plugin B with Plugin A - because Plugin B is not initialized at this moment.
Because of this, till now without zeitwerk, the solution was to use this Classes after all plugins are initialized (with Rails.configuration.to_prepare).

If Redmine::PluginLoader loads all plugins in "Rails.configuration.to_prepare" block, it is not possible to call an "Rails.configuration.to_prepare" block
in a plugin again. This would be a "Rails.configuration.to_prepare" block in a "Rails.configuration.to_prepare" block - and this does not work - as it
looks at the moment.

Here are some examples: https:/github.com/AlphaNodes/additional_tags/blob/master/init.rb or
https://github.com/AlphaNodes/redmine_saml/blob/master/init.rb or https://github.com/AlphaNodes/redmine_sudo/blob/master/init.rb (we build an

plugin loader for that)

I am not sure, if you get me right. | try to explain, that if you have dependencies between plugins (which we have a lot), there is no way (or | do not
know it), how we can run code from a plugin, after all plugins are initialized.

An example: Plugin B requires Plugin C. You cannot use Plugin C code in Plugin B, till it is initialized - and this worked perfectly with
Rails.configuration.to_prepare before zeitwerk. Maybe to provide a hook after initializing all plugins could be a solution.

#5 - 2021-12-01 17:09 - Ko Nagase
Hi Alexander,

| still haven't tried Redmine trunk yet, but | encountered the similar situation which needs to control plugins load orders in Redmine 4.2-stable branch.
https://github.com/gtt-project/redmine_ A1

From glance of Takashi's comment,

https://www.redmine.org/projects/redmine/repository/entry/trunk/lib/redmine/plugin_loader.rb#L.108

| noticed that there seems to be after_plugins_loaded hook which seems to be called when all plugins are loaded, so | guess that we can try to use
this way as a workaround.
https://www.redmine.org/i 202

#6 - 2021-12-01 17:32 - Alexander Meindl

Hi Ko,

indeed | found after_plugins _loaded hook some hours ago. But the problem with that is, you cannot use a patched method in
Redmine::Plugin.register block (e.g. to add a link to menu for special conditions, which requires a patch, which is applied later with

after_plugins_loaded hook).

Maybe the way with after_plugins_loaded hook is the right direction. Not sure, if there are more problems with that.
But dispense with Rails.configuration.to_prepare means a lot of rework/adjustments in plugins.

#7 - 2021-12-02 07:43 - Alexander Meindl

- Status changed from New to Resolved

after_plugins_loaded hook works for me as a replacement for Rails.configuration.to_prepare

#8 - 2021-12-02 09:22 - Go MAEDA
- Related to Patch #34072: Hook after plugins were loaded added

#9 - 2021-12-02 09:23 - Go MAEDA
- Related to Feature #32938: Rails 6: Zeitwerk support added

#10 - 2021-12-02 14:16 - Takashi Kato
Hi Alexander,

Glad that this is solved!
Thank you for your very meaningful report as it was a case that | hadn't really anticipated.

#11 - 2022-01-06 06:32 - Ko Nagase
Sorry for the very late reply.

| tried to check Zeitwerk plugin load sequence by "puts" debug on the latest 4.2-stable and master (trunk) branches with using ruby 2.7.4, and the

difference was as follows: 4.2-stable master (trunk)

2025-05-02 2/8

https://github.com/AlphaNodes/additional_tags/blob/master/init.rb
https://github.com/AlphaNodes/redmine_saml/blob/master/init.rb
https://github.com/AlphaNodes/redmine_sudo/blob/master/init.rb
https://github.com/AlphaNodes/additionals/blob/master/app/models/additionals_loader.rb#L37
https://github.com/gtt-project/redmine_gtt/pull/130
https://www.redmine.org/projects/redmine/repository/entry/trunk/lib/redmine/plugin_loader.rb#L108
https://www.redmine.org/issues/20263

2025-05-02

code

puts 'MyPlugin - init.rb'

Redmine: :Plugin.register
:my_plugin do

puts
'MyPlugin - Redmine::Plugin.
register’

name 'My Plugin plugin'

author 'Author name'

description
'This is a plugin for Redmin
e'

version '0.0.1"

url
'http://example.com/path/to/
plugin'

author_url
'http://example.com/about '
end

ActiveSupport: :Reloader.
to_prepare do

puts
'MyPlugin - ActiveSupport::R
eloader.to_prepare'
end

Rails.configuration.
to_prepare do

puts
'MyPlugin - Rails.configurat
ion.to_prepare'
end

Rails.application.config.
to_prepare do

puts
'MyPlugin - Rails.applicatio
n.config.to_prepare'
end

Rails.application.reloader.
to_prepare do

puts
'MyPlugin - Rails.applicatio
n.reloader.to_prepare'
end

Rails.application.config.
after_initialize do

puts
'MyPlugin - Rails.applicatio
n.config.after_initialize’
end

class AfterPluginsLoadedHook
< Redmine: :Hook::Listener
def after_plugins_loaded(
context = {})
puts
'MyPlugin - after_plugins_1lo
aded hook'
end
end

puts 'MyPlugin - init.rb'

Redmine: :Plugin.register
:my_plugin do

puts
'MyPlugin - Redmine::Plugin.
register'

name 'My Plugin plugin'

author 'Author name'

description
'This is a plugin for Redmin
e A}

version '0.0.1'

url
'http://example.com/path/to/
plugin'

author_url
'http://example.com/about'
end

ActiveSupport: :Reloader.
to_prepare do

puts
'MyPlugin - ActiveSupport::R
eloader.to_prepare'
end

Rails.configuration.
to_prepare do

puts
'MyPlugin - Rails.configurat
ion.to_prepare'
end

Rails.application.config.
to_prepare do

puts
'MyPlugin - Rails.applicatio
n.config.to_prepare'
end

Rails.application.reloader.
to_prepare do

puts
'MyPlugin - Rails.applicatio
n.reloader.to_prepare'
end

Rails.application.config.
after_initialize do

puts
'MyPlugin - Rails.applicatio
n.config.after_initialize'
end

#class AfterPluginsLoadedHoo
k < Redmine::Hook::Listener
Class.new (Redmine: :Hook: :
ViewListener) do |c|

def after_plugins_loaded(
context = {})

puts

'MyPlugin - after_plugins_1lo
aded hook'

end
end

result

Init server

MyPlugin - init.rb

MyPlugin - Redmine::Plugin.r
egister

MyPlugin - after_plugins_loa
ded hook

MyPlugin - ActiveSupport::Re
loader.to_prepare

Init server

MyPlugin - init.rb

MyPlugin - Redmine::Plugin.r
egister

MyPlugin - after_plugins_loa
ded hook

MyPlugin - Rails.application
.config.after_initialize

3/8

MyPlugin - Rails.application
.reloader.to_prepare
MyPlugin - Rails.configurati
on.to_prepare

MyPlugin - Rails.application
.config.to_prepare

MyPlugin - Rails.application
.config.after_initialize

Reload 1st after editing "
plugins/my_plugin/config/loc
ales/en.yml"

MyPlugin - ActiveSupport::Re
loader.to_prepare

MyPlugin - Rails.application
.reloader.to_prepare
MyPlugin - Rails.configurati
on.to_prepare

MyPlugin - Rails.application
.config.to_prepare

Reload 2nd after editing "
plugins/my_plugin/config/loc
ales/en.yml", again

MyPlugin - ActiveSupport::Re
loader.to_prepare

MyPlugin - Rails.application
.reloader.to_prepare
MyPlugin - Rails.configurati
on.to_prepare

MyPlugin - Rails.application
.config.to_prepare

Reload 1lst after editing "
plugins/my_plugin/config/loc
ales/en.yml"

MyPlugin - init.rb

MyPlugin - Redmine::Plugin.r
egister

MyPlugin - Rails.application
.config.after_initialize
MyPlugin - after_plugins_loa
ded hook

MyPlugin - ActiveSupport::Re
loader.to_prepare

MyPlugin - Rails.application
.reloader.to_prepare

Reload 2nd after editing "
plugins/my_plugin/config/loc
ales/en.yml", again

MyPlugin - init.rb

MyPlugin - Redmine::Plugin.r
egister

MyPlugin - Rails.application
.config.after_initialize
MyPlugin - after_plugins_loa
ded hook

MyPlugin - ActiveSupport::Re
loader.to_prepare

MyPlugin - Rails.application
.reloader.to_prepare
MyPlugin - ActiveSupport::Re
loader.to_prepare

MyPlugin - Rails.application
.reloader.to_prepare

In master (trunk) branch, | had to change the Hook class definition, because of the following error when reloading.
(Thanks tohosaku and @matobaa for the @redmine_Id_rize plugin's commit!)

TypeError (superclass mismatch for class AfterPluginsLoadedHook) :

plugins/my_plugin/init.rb:29:in "<top (required)>"'
lib/redmine/plugin_loader.rb:31:in " load'
lib/redmine/plugin_loader.rb:31:in “run_initializer'
lib/redmine/plugin_loader.rb:108:in ‘each'
lib/redmine/plugin_loader.rb:108:in “block in load'

In master (trunk) branch,
e "ActiveSupport::Reloader.to_prepare" and "Rails.application.reloader.to_prepare" are actually called when reloading, but not called at
initialization.
¢ "ActiveSupport::Reloader.to_prepare" and "Rails.application.reloader.to_prepare" seem to be called multiple times after 2nd reloading, and |
think that this behavior needs to be fixed.
e "after_plugins_loaded" hook called timing is different between 4.2-stable branch (only once) and master (trunk) (every load/reload), and | think
that same called timing is preferable (especially when supporting both Redmine 4.2 and 5.0 in the plugin).

2022-04-04: Added "Rails.application.config.after_initialize" in above table

#12 - 2022-01-06 10:14 - Ko Nagase

"after_plugins_loaded" hook called timing is different between 4.2-stable branch (only once) and master (trunk) (every load/reload), and | think
that same called timing is preferable (especially when supporting both Redmine 4.2 and 5.0 in the plugin).

Well, about this, just separating the event handler to "Rails.application.config.after_initialize" seems to be enough. ShowHide

—-—— a/lib/redmine/plugin_loader.rb

+++ b/lib/redmine/plugin_loader.rb

@@ -106,7 +106,9 @@ module Redmine

Rails.application.config.to_prepare do
PluginlLoader.directories.each(&:run_initializer)

2025-05-02 4/8

+ end

+ Rails.application.config.after_initialize do
Redmine: :Hook.call_hook :after_plugins_loaded
end
end

Also, in current master (trunk), "Rails.application.config.after_initialize" event handler (in the plugin's "init.rb") seems to be called at every load/reload
timing without duplicate call, so this can be also used instead of other ".to_prepare" functions of Redmine <= 4.2. (But | am not sure whether this is
expected result...) ShowHide

+ Rails.application.config.after_initialize do
+ puts 'MyPlugin - Rails.application.config.after_initialize'
+ end

Here is the combination result from above diffs. ShowHide

Init server

MyPlugin - init.rb

MyPlugin - Redmine::Plugin.register

MyPlugin - after_plugins_loaded hook

MyPlugin - Rails.application.config.after_initialize

Reload 1lst after editing "plugins/my_plugin/config/locales/en.yml"
MyPlugin - init.rb

MyPlugin - Redmine::Plugin.register

MyPlugin - Rails.application.config.after_initialize

MyPlugin - ActiveSupport::Reloader.to_prepare

MyPlugin - Rails.application.reloader.to_prepare

Reload 2nd after editing "plugins/my_plugin/config/locales/en.yml", again
MyPlugin - init.rb

MyPlugin - Redmine::Plugin.register

MyPlugin - Rails.application.config.after_initialize

MyPlugin - ActiveSupport::Reloader.to_prepare

MyPlugin - Rails.application.reloader.to_prepare

MyPlugin - ActiveSupport::Reloader.to_prepare

MyPlugin - Rails.application.reloader.to_prepare

FYI

#13 - 2022-01-06 13:20 - Ko Nagase

"ActiveSupport::Reloader.to_prepare" and "Rails.application.reloader.to_prepare" seem to be called multiple times after 2nd reloading, and |
think that this behavior needs to be fixed.

About this, just adding once execution guard by class variable may be enough. ShowHide

-—- a/lib/redmine/plugin_loader.rb
+++ b/lib/redmine/plugin_loader.rb
@@ -86,6 +86,8 @@ module Redmine
cattr_accessor :directory
self.directory = Rails.root.join('plugins')

+ @@initialized = false

Absolute path to the plublic directory where plugins assets are copied
cattr_accessor :public_directory
self.public_directory = Rails.root.join('public/plugin_assets"')
@@ -105,9 +107,12 Q@@ module Redmine
add_autoload_paths

Rails.application.config.to_prepare do
= PluginLoader.directories.each(&:run_initializer)
+ if !@Q@initialized
+ PluginlLoader.directories.each(&:run_initializer)

= Redmine: :Hook.call_hook :after_plugins_loaded
+ Redmine: :Hook.call_hook :after_plugins_loaded

2025-05-02 5/8

+ en
end
end

With this change, the result becomes as follows, and | think that this is the most similar with past (Redmine <= 4.2) sequence. ShowHide

Init serv
MyPlugin -
MyPlugin -
MyPlugin -
MyPlugin -

Reload 1s
MyPlugin -
MyPlugin -

Reload 2n
MyPlugin -
MyPlugin -

@@initialized = true
d

er
init.rb

Redmine: :Plugin.register
after_plugins_loaded hook
Rails.application.config.after_initialize

t after editing "plugins/my_plugin/config/locales/en.yml"
ActiveSupport: :Reloader.to_prepare
Rails.application.reloader.to_prepare

d after editing "plugins/my_plugin/config/locales/en.yml", again
ActiveSupport::Reloader.to_prepare
Rails.application.reloader.to_prepare

#14 - 2022-01-06 16:54 - Ko Nagase

Sorry, above note-13 comment seemed to be completely wrong...

Now, | am using "Rails.application.config.after_initialize" with current master (trunk) branch, and it seems to be no problem.

https://github.com/gtt-project/redmine_custom_fields_groups/pull/14

#15 - 2024-02-

14 13:23 - Dmitry Lisichkin

Some additions to this problem.
Using of Rails.configuration.after_initialize is not correct in init.rb form redmine >= 5.
after_initialize callback should be called only once.

If we include in this block patches for non reloadable code we will patch them again and again on every code reload.

A = Module.

Rails.confi
Redmine. i

puts Redm
end

new

guration.after_initialize do
nclude A

ine.ancestors

After several reloads output will be:

Redmine

i

In our codebas

Gemfile
gemspec nam

group :deve
gemspec n
end

my_plugin
Gem: :Specif
spec.name
spec.vers
spec.auth
spec.summ.
spec.requ

2025-05-02

e we just move this patches to local gem railtie:

e: 'my_plugin'

lopment do
ame: 'my_plugin-development'

.gemspec

ication.new do |spec]|

= 'my_plugin’

ion = '0.0.1"

ors = ['John Doe']

ary = 'Initializers and dependencies for my_plugin'
ired_ruby_version = '>= 2.7.0'

6/8

https://github.com/gtt-project/redmine_custom_fields_groups/pull/14

spec.require_paths = %w[non_reloadable_lib]

spec.files = %w]|
non_reloadable_lib/my_plugin.rb
non_reloadable_lib/my_plugin/railtie.rb

spec.add_dependency 'some_dep'
end

non_reloadable_lib/my_plugin.rb
require 'some_dep'
require 'my_plugin/railtie’

module MyPlugin
VERSION = '0.0.1"

def self.apply_patches
#
end
end

non_reloadable_lib/my_plugin/railtie.rb

require 'rails/railtie'
moduel MyPlugin
module Railtie < Rails::Railtie
initializer 'my_plugin.init' do |appl
app.config.to_prepare do
MyPlugin.apply_patches
end

app.config.after_initialize do
Redmine.include NonReloadablePatch
end
end
end
end

In this case we have both callbacks worked properly. Good things with this approche:

® plugin parts can be loaded before redmine so we even can add some basic initializers inside plugin
¢ same dependencies from several plugins will not show warnings at bundle install

* we can manage plugin-dependencies by bundler and not use redmine for this.
e we can manage patches order on separate plugins

Bad things:

¢ Gemfile.lock content after bundle install is not deterministic in general
¢ plugin Railtie can be loaded too early

First problem becouse of:

Dir.glob File.expand_path("../plugins/*/{Gemfile,PluginGemfile}", _ FILE_) do |file|

There no deterministic sort order on old ruby.

Can be fixed like this:

Dir.glob(File.expand_path("../plugins/*/{Gemfile,PluginGemfile}", _ FILE__)).sort.each do |[file|

Second problem:
For example we can't patch Issue before redmine loaded becouse acts_as_mentionable and others still not loaded to ActiveRecord::Base

This can be fixed by this code called at app start:
ActiveSupport.on_load(:active_record) do
include Redmine::Acts::Mentionable
end
Btw this change still nessessary:
pp ActiveRecord::Base.ancestors
On current redmine version after several code reloads output will be:
Redmine::I18n,

Redmine: :Acts: :Mentionable,
Redmine: :Acts::Positioned,

HH H = I

2025-05-02 7/8

Redmine::I18n,
Redmine: :Acts: :Mentionable,
Redmine: :Acts::Positioned,
Redmine::I18n,
Redmine: :Acts: :Mentionable,
Redmine: :Acts::Positioned,
Redmine::I18n,
Redmine: :Acts: :Mentionable,
Redmine: :Acts::Positioned,

H o H o o o H

For complete fix this files should be moved from auto_load_paths somewhere.

#16 - 2024-04-26 13:11 - Dmitry Lisichkin

One another problem for after_initialize in init.rb.

after_initialize block called too late for some cases. For example patches of controllers can work wrong in this case because controllers loads some
caches during whole after_initialize process.

So controllers can get wrong cache in case of plugins patches loads after it.

2025-05-02 8/8

http://www.tcpdf.org

