Redmine - Defect #37803

schema.rb dump/load does not preserve plugin migration version
2022-10-19 21:03 - crypto gopher

Status: New Start date:

Priority: Normal Due date:

Assignee: % Done: 0%
Category: Plugin API Estimated time: 0.00 hour
Target version:

Resolution: Affected version: 5.0.2
Description

When dumping Redmine db schema to *.rb file:

bundle exec rake db:schema:dump

current migration version is preserved for Redmine in db/schema.rb file:

This file is auto-generated from the current state of the database. Instead

ActiveRecord: :Schema.define (version: 2022_02_24_194639) do

Thanks to that, when schema is later loaded:

bundle exec rake db:schema:load

schema_migrations table is properly filled with applied migration versions and migration status stays in sync with database structure
saved in schema.rb

This does not work for plugins.

When you dump+purge+load database schema containing plugin migrations, status of plugin migrations is irreversibly lost. The
database structure contains all the tables/columns/etc. created by migrations, but schema_migrations table lacks entries
corresponding to versions of these migrations. Whenever migration of plugin is later initiated, it will re-execute all migrations, starting
from the first one, yielding errors if they were already applied before.

Solution
Extend dump/load mechanism with recording/restoring plugin migration versions:

module SchemaDumperPatch
def define_params
versions = super.present? ? [super] : []
Redmine::Plugin.all.each do |plugin|
versions << "#{plugin.id}: #{plugin.latest_migration}" if plugin.latest_migration
end
versions.join(", ")
end
end

module SchemaPatch
ActiveRecord: :ConnectionAdapters: :SchemaStatements.class_eval do
def assume_plugin_migrated_upto_version(plugin_id, version)
plugin = Redmine::Plugin.find(plugin_id)
version = version.to_1i

migrated = Redmine::Plugin::Migrator.get_all_versions (plugin)
versions = plugin.migrations

2025-05-17 1/2

inserting = (versions - migrated).select { |v| v <= version }
if inserting.any?
schema_migration.create_table
execute insert_versions_sqgl (inserting.map! { |v| "#{v}-#{plugin_id}" })
end
end
end

TODO: replace arguments with argument forwarding (info, ...) in Ruby 3.0
def define (info, &block)
super
info.except (:version).each { |id, v| assume_plugin_migrated_upto_version (id, v) }
end
end

ActiveRecord: :Schema.prepend SchemaPatch
ActiveRecord: :SchemaDumper.prepend SchemaDumperPatch

This is especially useful when running tests. When executing:

RAILS_ENV=test bundle exec rake redmine:plugins:test NAME=plugin_id

db:test:prepare rake task is executed as a preparation step, and causes db purge and subsequent schema load.

2025-05-17 22

http://www.tcpdf.org

